
Module-3: Schwarz Lemma and Its

Applications

The following theorem is an application of Rouche’s theorem.

Theorem 1. (Hurwitz Theorem)

Let {fn(z)} be a sequence of analytic functions defined on a domain D such that fn(z) 6=

0 ∀z ∈ D, n = 1, 2, . . . . Suppose that {fn(z)} converges uniformly to a function f(z)

on every compact subset of D. Then either f(z) ≡ 0 or f(z) 6= 0 for all z ∈ D.

Proof. Suppose that f(z) 6≡ 0 in D. We have to show that f(z) 6= 0 for all z ∈ D.

If possible, we assume that there is some z0 ∈ D for which f(z0) = 0. As zeros of an

analytic function are isolated, there is a deleted neighbourhood of z0, namely, Nδ(z0), in

which the function f(z) is not zero. That is,

f(z) 6= 0, for z ∈ 0 <| z − z0 | < δ, δ > 0.

Let δ′ > 0 be such that δ′ < δ. Then f(z) 6= 0 on the punctured disc 0 <| z − z0 | < δ′.

Let C be the circle having centre at z0 and radius δ′ and ε = min{| f(z) | : z ∈ C}.

C being a compact subset of D, the sequence fn(z) converges uniformly to f(z) on C.

Therefore, given ε > 0, there is a positive integer N such that for z ∈ C

| fn(z)− f(z) | < ε ∀ n > N.

Noting that ε ≤| f(z) | whenever z ∈ C, from above we obtain

| fn(z)− f(z) | < ε ≤ | f(z) | ∀ n > N ′,

and for all z on C. Hence, by Rouche’s theorem we can say that the functions f(z) and

[fn(z)− f(z)] + f(z) = fn(z) have the same number of zeros inside C. By assumption,
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f(z) has a zero at z0. Therefore, fn(z) must also have a zero inside C, a contradiction to

the hypothesis. Thus, we can conclude that f(z) 6= 0 for all z ∈ D unless the function is

identically zero. This proves the theorem.

Alternative statement of Hurwitz Theorem

Let {fn(z)} be a sequence of functions analytic inside and on a simple closed contour C,

and suppose that {fn(z)} converges uniformly to a function f(z) inside and on C. If f(z)

has no zeros on C, then the number of zeros of f(z) inside C is equal to the number of

zeros of fn(z) inside C for sufficiently large n.

We now come to an important geometric property of analytic functions that arises when

we consider them as mappings (that is, mapping regions in the complex plane to the

complex plane).

A mapping in the complex plane is said to be an open mapping if it maps open sets

into open sets.

Theorem 2. (Open Mapping Theorem)

A nonconstant analytic function maps open sets onto open sets.

Proof. Suppose that the function w = f(z) is analytic at z = z0. We have to show

that the image of every sufficiently small neighbourhood of z0 in the z-plane contains

a neighbourhood of w0 = f(z0) in the w-plane. We choose a positive number δ such

that f(z) − w0 is analytic in the disk | z − z0 | ≤ δ and contains no zero on the circle

| z − z0 | = δ. Let m be the minimum of | f(z) − w0 | on the circle | z − z0 | = δ (see

Fig.1). We shall show that the image of the disk | z − z0 | < δ under f(z) contains the

disk | w − w0 | < m. Let w1 be an arbitrary but fixed point in the disk | w − w0 | < m.

Then on the circle | z − z0 | = δ we have

| w0 − w1 | < m ≤ | f(z)− w0 | .

Therefore, by Rouche’s theorem, the functions f(z)−w0 and (f(z)−w0) + (w0−w1) =

f(z)− w1 has the same number of zeros in | z − z0 | < δ. Since the function f(z)− w0

has at least one zero at z0, the function f(z)−w1 has at least one zero. This means that

f(z) = w1 at least once. Since w1 is arbitrary, the image of the disk | z − z0 | < δ must

contain all points in the disk | w − w0 | < m. This proves the theorem.

Corollary 1. A nonconstant analytic function maps a domain onto a domain.
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Fig. 1:

Proof. We recall that a domain is an open connected set. Let f(z) be a nonconstant

analytic function. We know that a continuous image of a connected set is connected.

Also in view of Theorem 2, it follows that f(z) maps an open set onto an open set. Thus,

f(z), being an analytic function, is continuous and hence the result follows.

Corollary 2. If f(z) is analytic and univalent in a domain D, then f ′(z) 6= 0 in D.

Proof. If possible, we assume that f ′(z0) = 0 for some z0 in D. Since f(z) is analytic in

D, it has a Taylor series expansion about z0 of the form

f(z) =
∞∑
n=0

an(z − z0)n.

Now f ′(z0) = 0 implies that a1 = 0 and hence,

f(z)− f(z0) =
∞∑
n=2

an(z − z0)n

has a zero of order k at z0 where k ≥ 2 is an integer. By hypothesis f(z) is univalent and

so f(z) is a nonconstant function. Obviously, f(z)−f(z0) is analytic in D. Since the zeros

of an analytic function are isolated, we can find a neighbourhood | z− z0 | ≤ δ, δ > 0, in

which f(z)−f(z0) has no zero except z0. Thus f(z)−f(z0) 6= 0 on the circle | z−z0 | = δ,

and hence

m = inf{| f(z)− f(z0) | : z ∈ | z − z0 | = δ}
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is positive. Then, for any complex number c, 0 < | c | < m, we have

| c | < | f(z)− f(z0) |

or | [f(z)− f(z0)− c]− [f(z)− f(z0)] | < | f(z)− f(z0) | .

So, by Rouche’s theorem f(z) − f(z0) − c and f(z) − f(z0) have the same number of

zeros inside | z − z0 | = δ. Since f(z) − f(z0) has a zero of order k (k ≥ 2) inside this

circle, it therefore, follows that f(z)− f(z0)− c has two or more zeros inside this circle.

This means that the equation f(z) = f(z0) + c is satisfied at two or more points. This

contradicts the fact that f is univalent in D. Thus, f ′(z) 6= 0 for all points in D. This

proves the corollary.

Corollary 3. If f(z) is analytic and univalent in a domain D, then the inverse map

z = f−1(w) is analytic in f(D).

Proof. Since f(z) is analytic and univalent in D, by Corollary 2, f ′(z) 6= 0 in D. Let w0

be a fixed point in f(D). Then there exist a unique z0 ∈ D such that f(z0) = w0. Let

f−1 be the inverse of f . Then for any w ∈ f(D),

f−1(w)− f−1(w0)

w − w0

=
z − z0

f(z)− f(z0)

is well defined for all w in a deleted neighbourhood of w0. Proceeding to the limit as

w → w0 we obtain from above

(f−1)′(w0) =
1

f ′(z0)
.

w0 ∈ f(D) being arbitrary, it follows from above that f−1 is analytic in f(D). This

proves the corollary.

Example 1. Let f be analytic in a domain D. If any one of Re f, Im f, | f |, or Arg f

is constant, then show that f is constant.

Solution. Since any one of Re f, Im f, | f |, or Arg f is constant, f(D) would be a

subset of either the real axis, or the imaginary axis, or a circle or a line with constant

argument, respectively. Since none of them forms an open set, by open mapping theorem,

it follows that f is constant.
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If f(z) is nonconstant analytic function in | z | ≤ R and | f(z) | ≤ M on | z | = R,

then the maximum modulus principle says that | f(z) | < M for | z | < R. We now

develop methods to improve this bound inside the disc.

Theorem 3. (Schwarz Lemma)

Let f(z) be analytic in | z | < 1, with a zero of order n at the origin. Suppose that

| f(z) | ≤ 1 for all z in | z | < 1. Then,

| f(z) | ≤| z |n, | z | < 1, (1)

| f (n)(0) | ≤ n!. (2)

Further, equality holds in (1) for some z 6= 0 or in (2) if and only if f(z) is of the form

f(z) = czn, | c | = 1. (3)

Proof. Since f(z) is analytic in | z | < 1, by its Taylor expansion we obtain

f(z) =
∞∑
k=0

akz
k, | z | < 1,

where ak = f (k)(0)
k!

. Also, f(z) has a zero of order n at the origin implies that f(0) =

f ′(0) = f ′′(0) = . . . f (n−1)(0) = 0. So from above we get

f(z) =
∞∑
k=n

akz
k

=
f (n)(0)

n!
zn +

f (n+1)(0)

(n+ 1)!
zn+1 + . . . , | z | < 1.

For z = 0, (1) is the hypothesis. Let z 6= 0. Then from above we obtain

f(z)

zn
=
f (n)(0)

n!
+
f (n+1)(0)

(n+ 1)!
z + . . . , 0 <| z | < 1.

The series on the right side converges for z = 0. Let us define

g(z) =


f(z)
zn
, z 6= 0,

f (n)(0)
n!

, z = 0.

Now g(z) is analytic in | z | < 1. Let C denote the circle | z | = r, where 0 < r < 1. Then

by the maximum modulus principle we have

| g(z) | ≤ max
|z|=r

| g(z) | = max
|z|=r

| f(z)

zn
| ≤ 1

rn
, | z | ≤ r.
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The above inequality is true for all r < 1, letting r → 1, we obtain

| f(z) |
| z |n

≤ 1 i.e. | f(z) | ≤| z |n .

Since g(0) = f (n)(0)/n! and | g(0) | ≤ 1, we obtain (2).

In case | f(z0) | =| z0 |n for some z0 in 0 <| z0 |< R, then g(z0) = 1. It means

that | g | attains its maximum at the interior point z0. This is only possible if g(z) is a

constant, say, g(z) = c or f(z) = czn for some constant c with | c | = 1, which is (3).

The case f (n)(0) = n! can be proved similarly. This proves the theorem.

The following corollaries are the generalization of the Schwarz theorem.

Corollary 4. Let f(z) be analytic in | z | < R, with a zero of order n at the origin.

Suppose that | f(z) | ≤M for all z in | z | < R. Then,

| f(z) | ≤ M | z |n

Rn
, | z | < R, (4)

| f (n)(0) | ≤ Mn!

R
. (5)

Further, equality holds in (4) for some z 6= 0 or in (5) if and only if f(z) is of the form

f(z) =
Mczn

Rn
, | c | = 1.

Corollary 5. Let f(z) be analytic in | z−z0 | < R, with a zero of order n at z0. Suppose

that | f(z) | ≤M for all z in | z − z0 | < R. Then,

| f(z) | ≤ M | z − z0 |n

Rn
, | z − z0 | < R, (6)

| f (n)(z0) | ≤
Mn!

R
. (7)

Further, equality holds in (6) for some z 6= z0 or in (7) if and only if f(z) is of the form

f(z) =
Mc | z − z0 |n

Rn
, | c | = 1.

Some results

1. Let f(z) be analytic in | z | < 1 and | f(z) | ≤ 1 on | z | < 1. Then

| f(z)− f(z0)

1− f(z0)f(z)
| ≤ | z − z0

1− z0z
|,

for any z, z0 inside the unit disc.

2. Let f(z) be analytic in | z | < 1 and | f(z) | ≤ 1 on | z | < 1. Then

(i) | f(z) | ≤ |f(0)|+|z|
1+|f(0)||z| ;

(ii) | f ′(z) | ≤ 1−|f(z)|2
1−|z|2 . This result is known as Schwarz-Pick lemma.
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Example 2. Suppose that f(z) is analytic for | z | ≤ 1 such that | f(z) | < 1 for

| z | = 1. Show that f(z) = zn has exactly n solutions in | z | < 1.

Solution. Let g(z) = −zn. For | z | = 1, we have | f(z) | < 1 = | −zn | = | g(z) | .

Hence by Rouche’s theorem, we can say that g(z) and f(z) + g(z) = f(z)− zn has same

number of zeros in | z | < 1. Since g(z) has n zeros at origin, it follows that f(z) = zn

has exactly n solutions in | z | < 1.

Example 3. Let f be analytic in | z | < 1 such that | f(z) | ≤ 1 and f(1/3) = 0. Then,

estimate | f(1/7) | .

Solution. Since f is analytic in | z | < 1 and | f(z) | ≤ 1 for | z | < 1, we have

| f(z)− f(z0)

1− f(z0)f(z)
| ≤ | z − z0

1− z0z
|,

for any z, z0 inside the unit disc. Taking z = 1/7 and z0 = 1/3 we obtain

| f(1/7)− f(1/3)

1− f(1/3)f(1/7)
| ≤ | 1/7− 1/3

1− 1/21
|

i.e. | f(1/7) | ≤ 1/5.
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